Page 1

Displaying 1 – 6 of 6

Showing per page

Limit state analysis on the un-repeated multiple selection bounded confidence model

Jiangbo Zhang, Yiyi Zhao (2023)

Kybernetika

In this paper, we study the opinion evolution over social networks with a bounded confidence rule. Node initial opinions are independently and identically distributed. At each time step, each node reviews the average opinions of several different randomly selected agents and updates its opinion only when the difference between its opinion and the average is below a threshold. First of all, we provide probability bounds of the opinion convergence and the opinion consensus, are both nontrivial events...

Low-discrepancy point sets for non-uniform measures

Christoph Aistleitner, Josef Dick (2014)

Acta Arithmetica

We prove several results concerning the existence of low-discrepancy point sets with respect to an arbitrary non-uniform measure μ on the d-dimensional unit cube. We improve a theorem of Beck, by showing that for any d ≥ 1, N ≥ 1, and any non-negative, normalized Borel measure μ on [ 0 , 1 ] d there exists a point set x 1 , . . . , x N [ 0 , 1 ] d whose star-discrepancy with respect to μ is of order D N * ( x 1 , . . . , x N ; μ ) ( ( l o g N ) ( 3 d + 1 ) / 2 ) / N . For the proof we use a theorem of Banaszczyk concerning the balancing of vectors, which implies an upper bound for the linear discrepancy...

Currently displaying 1 – 6 of 6

Page 1