Page 1

Displaying 1 – 9 of 9

Showing per page

Randomized goodness of fit tests

Friedrich Liese, Bing Liu (2011)

Kybernetika

Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations...

Robust estimation based on spacings in weighted exponential models

Paweł Błażej, Jarosław Bartoszewicz (2007)

Applicationes Mathematicae

Using Zieliński's (1977, 1983) formalization of robustness Błażej (2007) obtained uniformly most bias-robust estimates (UMBREs) of the scale parameter for some statistical models (including the exponential model), in a class of linear functions of order statistics, when violations of the models are generated by weight functions. In this paper the UMBRE of the scale parameter, based on spacings, in two weighted exponential models is derived. Extensions of results of Bartoszewicz (1986, 1987) are...

Robust estimation of the scale and weighted distributions

Paweł Błażej (2007)

Applicationes Mathematicae

The concept of robustness given by Zieliński (1977) is considered in cases where violations of models are generated by weight functions. Uniformly most bias-robust estimates of the scale parameter, based on order statistics, are obtained for some statistical models. Extensions of results of Zieliński (1983) and Bartoszewicz (1986) are given.

Currently displaying 1 – 9 of 9

Page 1