The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study sample-based estimates of the expectation of the function
produced by the empirical minimization algorithm. We investigate the
extent to which one can estimate the rate of convergence of the
empirical minimizer in a data dependent manner. We establish three
main results. First, we provide an algorithm that upper bounds the
expectation of the empirical minimizer in a completely
data-dependent manner. This bound is based on a structural result
due to Bartlett and Mendelson, which relates...
We study the performance of empirical risk minimization (ERM), with respect to the quadratic risk, in the context of convex aggregation, in which one wants to construct a procedure whose risk is as close as possible to the best function in the convex hull of an arbitrary finite class . We show that ERM performed in the convex hull of is an optimal aggregation procedure for the convex aggregation problem. We also show that if this procedure is used for the problem of model selection aggregation,...
We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter...
Currently displaying 1 –
3 of
3