Page 1

Displaying 1 – 7 of 7

Showing per page

Equivalence of compositional expressions and independence relations in compositional models

Francesco M. Malvestuto (2014)

Kybernetika

We generalize Jiroušek’s (right) composition operator in such a way that it can be applied to distribution functions with values in a “semifield“, and introduce (parenthesized) compositional expressions, which in some sense generalize Jiroušek’s “generating sequences” of compositional models. We say that two compositional expressions are equivalent if their evaluations always produce the same results whenever they are defined. Our first result is that a set system is star-like with centre X if...

Exact distribution under independence of the diagonal section of the empirical copula

Arturo Erdely, José M. González–Barrios (2008)

Kybernetika

In this paper we analyze some properties of the empirical diagonal and we obtain its exact distribution under independence for the two and three- dimensional cases, but the ideas proposed in this paper can be carried out to higher dimensions. The results obtained are useful in designing a nonparametric test for independence, and therefore giving solution to an open problem proposed by Alsina, Frank and Schweizer [2].

Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal

Christopher S. Withers, Saralees Nadarajah (2012)

ESAIM: Probability and Statistics

We extend Leibniz' rule for repeated derivatives of a product to multivariate integrals of a product. As an application we obtain expansions for P(a < Y < b) for Y ~ Np(0,V) and for repeated integrals of the density of Y. When V−1y > 0 in R3 the expansion for P(Y < y) reduces to one given by [H. Ruben J. Res. Nat. Bureau Stand. B 68 (1964) 3–11]. in terms of the moments of Np(0,V−1). This is shown to be a special case of an expansion in terms of the multivariate Hermite polynomials. These...

Expansions for Repeated Integrals of Products with Applications to the Multivariate Normal

Christopher S. Withers, Saralees Nadarajah (2011)

ESAIM: Probability and Statistics

We extend Leibniz' rule for repeated derivatives of a product to multivariate integrals of a product. As an application we obtain expansions for P(a &lt; Y &lt; b) for Y ~ Np(0,V) and for repeated integrals of the density of Y. When V−1y &gt; 0 in R3 the expansion for P(Y &lt; y) reduces to one given by [H. Ruben J. Res. Nat. Bureau Stand. B 68 (1964) 3–11]. in terms of the moments of Np(0,V−1). This is shown to be a special case of an expansion in terms of the multivariate Hermite...

Extreme distribution functions of copulas

Manuel Úbeda-Flores (2008)

Kybernetika

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

Currently displaying 1 – 7 of 7

Page 1