On a conditional Cauchy functional equation of several variables and a characterization of multivariate stable distributions.
We give a representation of the class of all -dimensional copulas such that, for a fixed , , all their -dimensional margins are equal to the independence copula. Such an investigation originated from an open problem posed by Schweizer and Sklar.
We study the impact of certain transformations within the class of Archimedean copulas. We give some admissibility conditions for these transformations, and define some equivalence classes for both transformations and generators of Archimedean copulas. We extend the r-fold composition of the diagonal section of a copula, from r ∈ N to r ∈ R. This extension, coupled with results on equivalence classes, gives us new expressions of transformations and generators. Estimators deriving directly from these...
If conditional independence constraints define a family of positive distributions that is log-convex then this family turns out to be a Markov model over an undirected graph. This is proved for the distributions on products of finite sets and for the regular Gaussian ones. As a consequence, the assertion known as Brook factorization theorem, Hammersley–Clifford theorem or Gibbs–Markov equivalence is obtained.
The paper deals with Conditional Value at Risk (CoVaR) for copulas with nontrivial tail dependence. We show that both in the standard and the modified settings, the tail dependence function determines the limiting properties of CoVaR as the conditioning event becomes more extreme. The results are illustrated with examples using the extreme value, conic and truncation invariant families of bivariate tail-dependent copulas.
We study a wide class of copulas which generalizes well-known families of copulas, such as the semilinear copulas. We also study corresponding results for the case of quasi-copulas.
Performance of coherent reliability systems is strongly connected with distributions of order statistics of failure times of components. A crucial assumption here is that the distributions of possibly mutually dependent lifetimes of components are exchangeable and jointly absolutely continuous. Assuming absolute continuity of marginals, we focus on properties of respective copulas and characterize the marginal distribution functions of order statistics that may correspond to absolute continuous...
The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI...
In this paper we will prove a characterization for the independence of random vectors with positive (negative) orthant dependence according to a direction. The result can be seen as a generalization of a result by Lehmann [4].
We introduce the concept of monotone dependence function of bivariate distributions without moment conditions. Our concept gives, among other things, a characterization of independent and positively (negatively) quadrant dependent random variables.
Quasi-homogeneity of copulas is introduced and studied. Quasi-homogeneous copulas are characterized by the convexity and strict monotonicity of their diagonal sections. As a by-product, a new construction method for copulas when only their diagonal section is known is given.
Vine copulas are a flexible way for modeling dependences using only pair-copulas as building blocks. However if the number of variables grows the problem gets fastly intractable. For dealing with this problem Brechmann at al. proposed the truncated R-vine copulas. The truncated R-vine copula has the very useful property that it can be constructed by using only pair-copulas and a lower number of conditional pair-copulas. In our earlier papers we introduced the concept of cherry-tree copulas. In this...
We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence...