Estimation of Correlation for a Finite Universe
El análisis canónico parcial introducido por R. B. Rao (1969) fue generalizado por Timm y Carlson (1976) dando lugar al análisis canónico biparcial. Sik-Yumm-Lee (1978) realiza una generalización del modelo biparcial que se concreta en el análisis canónico G2-biparcial.En este trabajo se expone una generalización del análisis canónico G2-biparcial a la que hemos denominado "Análisis canónico C(2n + 1)". Dicho análisis presenta el estudio de las interdependencias entre dos vectores de residuos resultantes...
We prove some inequalities for the difference between a joint distribution and the product of its marginals for arbitrary absolutely continuous random variables. Some applications of the obtained inequalities are also presented.
In previous papers, evolution of dependence and ageing, for vectors of non-negative random variables, have been separately considered. Some analogies between the two evolutions emerge however in those studies. In the present paper, we propose a unified approach, based on semigroup arguments, explaining the origin of such analogies and relations among properties of stochastic dependence and ageing.
Regresní a korelační analýza patří mezi nejčastěji používané metody statistického zpracování dat. Objev této metody je spojen se jménem geniálního myslitele 19. století Francise Galtona. Článek je zaměřen na život a dílo tohoto významného vědce a zejména na přiblížení jeho myšlenek při tvorbě základních pojmů regresní a korelační analýzy.
A weak version of the joint hazard rate order, useful to stochastically compare not independent random variables, has been recently defined and studied in [4]. In the present paper, further results on this order are proved and discussed. In particular, some statements dealing with the relationships between the jointweak hazard rate order and other stochastic orders are generalized to the case of non symmetric copulas, and its relations with some multivariate aging notions (studied in [2]) are presented....
High-dimensional data models abound in genomics studies, where often inadequately small sample sizes create impasses for incorporation of standard statistical tools. Conventional assumptions of linearity of regression, homoscedasticity and (multi-) normality of errors may not be tenable in many such interdisciplinary setups. In this study, Kendall's tau-type rank statistics are employed for statistical inference, avoiding most of parametric assumptions to a greater extent. The proposed procedures...