Displaying 21 – 40 of 107

Showing per page

On distributions of order statistics for absolutely continuous copulas with applications to reliability

Piotr Jaworski, Tomasz Rychlik (2008)

Kybernetika

Performance of coherent reliability systems is strongly connected with distributions of order statistics of failure times of components. A crucial assumption here is that the distributions of possibly mutually dependent lifetimes of components are exchangeable and jointly absolutely continuous. Assuming absolute continuity of marginals, we focus on properties of respective copulas and characterize the marginal distribution functions of order statistics that may correspond to absolute continuous...

On eliminating transformations for nuisance parameters in multivariate linear model

Pavla Kunderová (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The multivariate linear model, in which the matrix of the first order parameters is divided into two matrices: to the matrix of the useful parameters and to the matrix of the nuisance parameters, is considered. We examine eliminating transformations which eliminate the nuisance parameters without loss of information on the useful parameters and on the variance components.

On extremal dependence of block vectors

Helena Ferreira, Marta Ferreira (2012)

Kybernetika

Due to globalization and relaxed market regulation, we have assisted to an increasing of extremal dependence in international markets. As a consequence, several measures of tail dependence have been stated in literature in recent years, based on multivariate extreme-value theory. In this paper we present a tail dependence function and an extremal coefficient of dependence between two random vectors that extend existing ones. We shall see that in weakening the usual required dependence allows to...

On factorization of probability distributions over directed graphs

František Matúš, Bernhard Strohmeier (1998)

Kybernetika

Four notions of factorizability over arbitrary directed graphs are examined. For acyclic graphs they coincide and are identical with the usual factorization of probability distributions in Markov models. Relations between the factorizations over circuits are described in detail including nontrivial counterexamples. Restrictions on the cardinality of state spaces cause that a factorizability with respect to some special cyclic graphs implies the factorizability with respect to their, more simple,...

On generalized conditional cumulative past inaccuracy measure

Amit Ghosh, Chanchal Kundu (2018)

Applications of Mathematics

The notion of cumulative past inaccuracy (CPI) measure has recently been proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate as well as bivariate setup. In this paper, we introduce the notion of CPI of order α and study the proposed measure for conditionally specified models of two components failed at different time instants, called generalized conditional CPI (GCCPI). Several properties, including the effect of monotone transformation and bounds of GCCPI...

On geometry of the set of admissible quadratic estimators of quadratic functions of normal parameters

Konrad Neumann, Stefan Zontek (2006)

Discussiones Mathematicae Probability and Statistics

We consider the problem of admissible quadratic estimation of a linear function of μ² and σ² in n dimensional normal model N(Kμ,σ²Iₙ) under quadratic risk function. After reducing this problem to admissible estimation of a linear function of two quadratic forms, the set of admissible estimators are characterized by giving formulae on the boundary of the set D ⊂ R² of components of the two quadratic forms constituting the set of admissible estimators. Different shapes and topological properties of...

On identifiability of mixtures of independent distribution laws

Mikhail Kovtun, Igor Akushevich, Anatoliy Yashin (2014)

ESAIM: Probability and Statistics

We consider representations of a joint distribution law of a family of categorical random variables (i.e., a multivariate categorical variable) as a mixture of independent distribution laws (i.e. distribution laws according to which random variables are mutually independent). For infinite families of random variables, we describe a class of mixtures with identifiable mixing measure. This class is interesting from a practical point of view as well, as its structure clarifies principles of selecting...

On independence in some families of multivariate distributions.

José Juan Quesada (1986)

Stochastica

In this paper we will prove a characterization for the independence of random vectors with positive (negative) orthant dependence according to a direction. The result can be seen as a generalization of a result by Lehmann [4].

On measures of concordance.

Marco Scarsini (1984)

Stochastica

We give a general definition of concordance and a set of axioms for measures of concordance. We then consider a family of measures satisfying these axioms. We compare our results with known results, in the discrete case.

On metric divergences of probability measures

Igor Vajda (2009)

Kybernetika

Standard properties of φ -divergences of probability measures are widely applied in various areas of information processing. Among the desirable supplementary properties facilitating employment of mathematical methods is the metricity of φ -divergences, or the metricity of their powers. This paper extends the previously known family of φ -divergences with these properties. The extension consists of a continuum of φ -divergences which are squared metric distances and which are mostly new but include...

On monotone dependence functions of the quantile type

Andrzej Krajka, Dominik Szynal (1995)

Applicationes Mathematicae

We introduce the concept of monotone dependence function of bivariate distributions without moment conditions. Our concept gives, among other things, a characterization of independent and positively (negatively) quadrant dependent random variables.

Currently displaying 21 – 40 of 107