Some limit properties of an approximate least squares estimator in a nonlinear regression model with correlated nonzero mean errors.
The paper deals with the experimental design which is optimal in the following sense: it satisfies the cost requirements simultaneously with a satisfactory precision of estimates. The underlying regression model is quadratic. The estimates of unknown parameters of the model are explicitly derived.
Biology and medicine are not the only fields that present problems unsolvable through a linear models approach. One way to overcome this obstacle is to use nonlinear methods, even though these are not as thoroughly explored. Another possibility is to linearize and transform the originally nonlinear task to make it accessible to linear methods. In this aricle I investigate an easy and quick criterion to verify suitability of linearization of nonlinear problems via Taylor series expansion so that...
In weakly nonlinear regression model a weakly nonlinear hypothesis can be tested by linear methods if an information on actual values of model parameters is at our disposal and some condition is satisfied. In other words we must know that unknown parameters are with sufficiently high probability in so called linearization region. The aim of the paper is to determine this region.
Nonlinear dynamic processes with time-varying time delays can often be encountered in industry. Time-delay estimation for nonlinear dynamic systems with time-varying time delays is an important issue for system identification. In order to estimate the dynamics of a process, a dynamic neural network with an external recurrent structure is applied in the modeling procedure. In the case where a delay is time varying, a useful way is to develop on-line time-delay estimation mechanisms to track the time-delay...
The aim of the paper is to determine an influence of uncertainties in design and covariance matrices on estimators in linear regression model.
A large number of parameters in regression models can be serious obstacle for processing and interpretation of experimental data. One way how to overcome it is an elimination of some parameters. In some cases it need not deteriorate statistical properties of estimators of useful parameters and can help to interpret them. The problem is to find conditions which enable us to decide whether such favourable situation occurs.
Unknown parameters of the covariance matrix (variance components) of the observation vector in regression models are an unpleasant obstacle in a construction of the best estimator of the unknown parameters of the mean value of the observation vector. Estimators of variance componets must be utilized and then it is difficult to obtain the distribution of the estimators of the mean value parameters. The situation is more complicated in the case of nonlinearity of the regression model. The aim of the...
Nowadays, the algorithm most frequently used for determination of the estimators of parameters which define a transformation between two coordinate systems (in this case the Helmert transformation) is derived under one unreal assumption of errorless measurement in the first system. As it is practically impossible to ensure errorless measurements, we can hardly believe that the results of this algorithm are “optimal”. In 1998, Kubáček and Kubáčková proposed an algorithm which takes errors in both...
The problem considered is under which conditions in weakly nonlinear regression model with constraints I a weakly nonlinear hypothesis can be tested by linear methods. The aim of the paper is to find a region around the approximate value of the regression parameter with the following property. If we are certain that the actual value of the regression parameter is in this region, then the linear method of testing can be used without any significant deterioration of the inference.