Page 1

Displaying 1 – 8 of 8

Showing per page

A new stochastic restricted biased estimator under heteroscedastic or correlated error

Mustafa Ismaeel Alheety (2011)

ESAIM: Probability and Statistics

In this paper, under the linear regression model with heteroscedastic and/or correlated errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a generalization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR) and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist. Papers 50 (2007) 639–647]...

A new stochastic restricted biased estimator under heteroscedastic or correlated error

Mustafa Ismaeel Alheety (2011)

ESAIM: Probability and Statistics

In this paper, under the linear regression model with heteroscedastic and/or correlated errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a generalization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR) and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist. Papers50 (2007) 639–647]...

A review of the results on the Stein approach for estimators improvement.

Vassiliy G. Voinov, Mikhail S. Nikulin (1995)

Qüestiió

Since 1956, a large number of papers have been devoted to Stein's technique of obtaining improved estimators of parameters, for several statistical models. We give a brief review of these papers, emphasizing those aspects which are interesting from the point of view of the theory of unbiased estimation.

An alternative analysis of variance.

Nicholas T. Longford (2008)

SORT

The one-way analysis of variance is a staple of elementary statistics courses. The hypothesis test of homogeneity of the means encourages the use of the selected-model based estimators which are usually assessed without any regard for the uncertainty about the outcome of the test. We expose the weaknesses of such estimators when the uncertainty is taken into account, as it should be, and propose synthetic estimators as an alternative.

Currently displaying 1 – 8 of 8

Page 1