Deux structures statistiques fondamentales en analyse de la variance univariée et multivariée
The MINQUE of the linear function of the unknown variance-components parameter in mixed linear model under linear restrictions of the type is defined and derived. As an illustration of this estimator the example of the one-way classification model with the restrictions , where , is given.
Explicit expressions of UMVUE for variance components are obtained for a class of models that include balanced cross nested random models. These estimators are used to derive tests for the nullity of variance components. Besides the usual F tests, generalized F tests will be introduced. The separation between both types of tests will be based on a general theorem that holds even for mixed models. It is shown how to estimate the p-value of generalized F tests.
Generalized F statistics are the quotients of convex combinations of central chi-squares divided by their degrees of freedom. Exact expressions are obtained for the distribution of these statistics when the degrees of freedom either in the numerator or in the denominator are even. An example is given to show how these expressions may be used to check the accuracy of Monte-Carlo methods in tabling these distributions. Moreover, when carrying out adaptative tests, these expressions enable us to estimate...
F tests and selective F tests for fixed effects part of balanced models with cross-nesting are derived. The effects of perturbations in the numerator and denominator of the F statistics are considered.
When the measurement errors may be assumed to be normal and independent from what is measured a subnormal model may be used. We define a linear and generalized linear hypotheses for these models, and derive F-tests for them. These tests are shown to be UMP for linear hypotheses as well as strictly unbiased and strongly consistent for these hypotheses. It is also shown that the F-tests are invariant for regular transformations, possess structural stability and are almost strongly consistent for generalized...
The current powerful graphics cards, providing stunning real-time visual effects for computer-based entertainment, have to accommodate powerful hardware components that are able to deliver the photo-realistic simulation to the end-user. Given the vast computing power of the graphics hardware, its producers very often offer a programming interface that makes it possible to use the computational resources of the graphics processors (GPU) to more general purposes. This step gave birth to the so-called...
Nonsensitiveness regions for estimators of linear functions, for confidence ellipsoids, for the level of a test of a linear hypothesis on parameters and for the value of the power function are investigated in a linear model with variance components. The influence of the design of an experiment on the nonsensitiveness regions mentioned is numerically demonstrated and discussed on an example.