Reduced rank quasi-symmetry and quasi-skew symmetry : a generalized bi-linear model approach
In this paper are presented two robust estimators of unknown fuzzy parameters in the fuzzy regression model and investigated the relationship between these robust estimators in the classical regression model and in the fuzzy regression model.
The paper investigates generalized linear models (GLM's) with binary responses such as the logistic, probit, log-log, complementary log-log, scobit and power logit models. It introduces a median estimator of the underlying structural parameters of these models based on statistically smoothed binary responses. Consistency and asymptotic normality of this estimator are proved. Examples of derivation of the asymptotic covariance matrix under the above mentioned models are presented. Finally some comments...
Generalized F tests were introduced by Michalski and Zmyślony (1996) for variance components and later (1999) for linear functions of parameters in mixed linear models. We now use generalized polar coordinates to obtain, for the second case, tests that are more powerful for selected families of alternatives.
The problem of testability has been undertaken many times in the context of linear hypotheses. Almost all these considerations restricted to some algebraical conditions without reaching the nature of the problem. Therefore, a general and commonly acceptable notion of testability is still wanted. Our notion is based on a simple and natural decision theoretic requirement and is characterized in terms of the families of distributions corresponding to the null and the alternative hypothesis. Its consequences...