Displaying 301 – 320 of 657

Showing per page

Linear comparative calibration with correlated measurements

Gejza Wimmer, Viktor Witkovský (2007)

Kybernetika

The paper deals with the linear comparative calibration problem, i. e. the situation when both variables are subject to errors. Considered is a quite general model which allows to include possibly correlated data (measurements). From statistical point of view the model could be represented by the linear errors-in-variables (EIV) model. We suggest an iterative algorithm for estimation the parameters of the analysis function (inverse of the calibration line) and we solve the problem of deriving the...

Linear conform transformation: Errors in both coordinate systems

Lubomír Kubáček, Ludmila Kubáčková, Jan Ševčík (2002)

Applications of Mathematics

Linear conform transformation in the case of non-negligible errors in both coordinate systems is investigated. Estimation of transformation parameters and their statistical properties are described. Confidence ellipses of transformed nonidentical points and cross covariance matrices among them and identical points are determined. Some simulation for a verification of theoretical results are presented.

Linear error propagation law and plug-in estimators

Lubomír Kubáček (2012)

Applications of Mathematics

In mixed linear statistical models the best linear unbiased estimators need a known covariance matrix. However, the variance components must be usually estimated. Thus a problem arises what is the covariance matrix of the plug-in estimators.

Linear model with inaccurate variance components

Lubomír Kubáček (1996)

Applications of Mathematics

A linear model with approximate variance components is considered. Differences among approximate and actual values of variance components influence the proper position and the shape of confidence ellipsoids, the level of statistical tests and their power function. A procedure how to recognize whether these diferences can be neglected is given in the paper.

Linear model with nuisance parameters and with constraints on useful and nuisance parameters

Pavla Kunderová, Jaroslav Marek (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The properties of the regular linear model are well known (see [1], Chapter 1). In this paper the situation where the vector of the first order parameters is divided into two parts (to the vector of the useful parameters and to the vector of the nuisance parameters) is considered. It will be shown how the BLUEs of these parameters will be changed by constraints given on them. The theory will be illustrated by an example from the practice.

Linear versus quadratic estimators in linearized models

Lubomír Kubáček (2004)

Applications of Mathematics

In nonlinear regression models an approximate value of an unknown parameter is frequently at our disposal. Then the linearization of the model is used and a linear estimate of the parameter can be calculated. Some criteria how to recognize whether a linearization is possible are developed. In the case that they are not satisfied, it is necessary to take into account either some quadratic corrections or to use the nonlinear least squares method. The aim of the paper is to find some criteria for an...

Linearization conditions for regression models with unknown variance parameter

Anna Jenčová (2000)

Applications of Mathematics

In the case of the nonlinear regression model, methods and procedures have been developed to obtain estimates of the parameters. These methods are much more complicated than the procedures used if the model considered is linear. Moreover, unlike the linear case, the properties of the resulting estimators are unknown and usually depend on the true values of the estimated parameters. It is sometimes possible to approximate the nonlinear model by a linear one and use the much more developed linear...

Linearization regions for a confidence ellipsoid in singular nonlinear regression models

Lubomír Kubáček, Eva Tesaříková (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

A construction of confidence regions in nonlinear regression models is difficult mainly in the case that the dimension of an estimated vector parameter is large. A singularity is also a problem. Therefore some simple approximation of an exact confidence region is welcome. The aim of the paper is to give a small modification of a confidence ellipsoid constructed in a linearized model which is sufficient under some conditions for an approximation of the exact confidence region.

Linearization regions for confidence ellipsoids

Lubomír Kubáček, Eva Tesaříková (2008)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

If an observation vector in a nonlinear regression model is normally distributed, then an algorithm for a determination of the exact ( 1 - α ) -confidence region for the parameter of the mean value of the observation vector is well known. However its numerical realization is tedious and therefore it is of some interest to find some condition which enables us to construct this region in a simpler way.

Linearized models with constraints of type I

Lubomír Kubáček (2003)

Applications of Mathematics

In nonlinear regression models with constraints a linearization of the model leads to a bias in estimators of parameters of the mean value of the observation vector. Some criteria how to recognize whether a linearization is possible is developed. In the case that they are not satisfied, it is necessary to decide whether some quadratic corrections can make the estimator better. The aim of the paper is to contribute to the solution of the problem.

Linearized regression model with constraints of type II

Lubomír Kubáček (2003)

Applications of Mathematics

A linearization of the nonlinear regression model causes a bias in estimators of model parameters. It can be eliminated, e.g., either by a proper choice of the point where the model is developed into the Taylor series or by quadratic corrections of linear estimators. The aim of the paper is to obtain formulae for biases and variances of estimators in linearized models and also for corrected estimators.

Linear-quadratic estimators in a special structure of the linear model

Gejza Wimmer (1995)

Applications of Mathematics

The paper deals with the linear model with uncorrelated observations. The dispersions of the values observed are linear-quadratic functions of the unknown parameters of the mean (measurements by devices of a given class of precision). Investigated are the locally best linear-quadratic unbiased estimators as improvements of locally best linear unbiased estimators in the case that the design matrix has none, one or two linearly dependent rows.

Locally and uniformly best estimators in replicated regression model

Júlia Volaufová, Lubomír Kubáček (1983)

Aplikace matematiky

The aim of the paper is to estimate a function γ = t r ( D β β ' ) + t r ( C ) (with d , C known matrices) in a regression model ( Y , X β , ) with an unknown parameter β and covariance matrix . Stochastically independent replications Y 1 , ... , Y m of the stochastic vector Y are considered, where the estimators of X β and are Y ¯ = 1 m i = 1 m Y i and ^ = ( m - 1 ) - 1 i = 1 m ( Y i - Y ¯ ) ( Y i - Y ¯ ) ' , respectively. Locally and uniformly best inbiased estimators of the function γ , based on Y ¯ and ^ , are given.

Currently displaying 301 – 320 of 657