Previous Page 2

Displaying 21 – 36 of 36

Showing per page

Confidence regions in nonlinear regression models

Rastislav Potocký, Van Ban To (1992)

Applications of Mathematics

New curvature measures for nonlinear regression models are developed and methods of their computing are given. Using these measures, more accurate confidence regions for parameters than those based on linear or quadratic approximations are obtained.

Consistency of linear and quadratic least squares estimators in regression models with covariance stationary errors

František Štulajter (1991)

Applications of Mathematics

The least squres invariant quadratic estimator of an unknown covariance function of a stochastic process is defined and a sufficient condition for consistency of this estimator is derived. The mean value of the observed process is assumed to fulfil a linear regresion model. A sufficient condition for consistency of the least squares estimator of the regression parameters is derived, too.

Consistency of the least weighted squares under heteroscedasticity

Jan Ámos Víšek (2011)

Kybernetika

A robust version of the Ordinary Least Squares accommodating the idea of weighting the order statistics of the squared residuals (rather than directly the squares of residuals) is recalled and its properties are studied. The existence of solution of the corresponding extremal problem and the consistency under heteroscedasticity is proved.

Consistency of the LSE in Linear regression with stationary noise

Guy Cohen, Michael Lin, Arkady Tempelman (2004)

Colloquium Mathematicae

We obtain conditions for L₂ and strong consistency of the least square estimators of the coefficients in a multi-linear regression model with a stationary random noise. For given non-random regressors, we obtain conditions which ensure L₂-consistency for all wide sense stationary noise sequences with spectral measure in a given class. The condition for the class of all noises with continuous (i.e., atomless) spectral measures yields also L p -consistency when the noise is strict sense stationary with...

Contribuciones a la generalización del problema de compensación por grupos de Helmert-Pranis Pranievich.

Ioan Popescu (1988)

Revista Matemática de la Universidad Complutense de Madrid

The paper presents in a generalized form the problem of the geodetic network adjustment by the Helmert-Pranis Pranievich groups method (groups with junction points included or not). The adjustment problem, as well as the cofactor matrix derivation for the partial-independent and linkage unknowns, was completely formulated by transformed weight matrix definition and usage. A complete sequence of the computing stages for the geodetic networks divided into groups without junction points was given for...

Covariance Structure of Principal Components for Three-Part Compositional Data

Klára Hrůzová, Karel Hron, Miroslav Rypka, Eva Fišerová (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Statistical analysis of compositional data, multivariate observations carrying only relative information (proportions, percentages), should be performed only in orthonormal coordinates with respect to the Aitchison geometry on the simplex. In case of three-part compositions it is possible to decompose the covariance structure of the well-known principal components using variances of log-ratios of the original parts. They seem to be helpful for the interpretation of these special orthonormal coordinates....

Currently displaying 21 – 36 of 36

Previous Page 2