Page 1

Displaying 1 – 5 of 5

Showing per page

Estimating an even spherical measure from its sine transform

Lars Michael Hoffmann (2009)

Applications of Mathematics

To reconstruct an even Borel measure on the unit sphere from finitely many values of its sine transform a least square estimator is proposed. Applying results by Gardner, Kiderlen and Milanfar we estimate its rate of convergence and prove strong consistency. We close this paper by giving an estimator for the directional distribution of certain three-dimensional stationary Poisson processes of convex cylinders which have applications in material science.

Estimation of summary characteristics from replicated spatial point processes

Zbyněk Pawlas (2011)

Kybernetika

Summary characteristics play an important role in the analysis of spatial point processes. We discuss various approaches to estimating summary characteristics from replicated observations of a stationary point process. The estimators are compared with respect to their integrated squared error. Simulations for three basic types of point processes help to indicate the best way of pooling the subwindow estimators. The most appropriate way depends on the particular summary characteristic, edge-correction...

Estimation of the density of a determinantal process

Yannick Baraud (2013)

Confluentes Mathematici

We consider the problem of estimating the density Π of a determinantal process N from the observation of n independent copies of it. We use an aggregation procedure based on robust testing to build our estimator. We establish non-asymptotic risk bounds with respect to the Hellinger loss and deduce, when n goes to infinity, uniform rates of convergence over classes of densities Π of interest.

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2004)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Extreme values and kernel estimates of point processes boundaries

Stéphane Girard, Pierre Jacob (2010)

ESAIM: Probability and Statistics

We present a method for estimating the edge of a two-dimensional bounded set, given a finite random set of points drawn from the interior. The estimator is based both on a Parzen-Rosenblatt kernel and extreme values of point processes. We give conditions for various kinds of convergence and asymptotic normality. We propose a method of reducing the negative bias and edge effects, illustrated by some simulations.

Currently displaying 1 – 5 of 5

Page 1