Page 1

Displaying 1 – 4 of 4

Showing per page

Efficient estimation of functionals of the spectral density of stationary Gaussian fields

Carenne Ludeña (2010)

ESAIM: Probability and Statistics

Minimax bounds for the risk function of estimators of functionals of the spectral density of Gaussian fields are obtained. This result is a generalization of a previous result of Khas'minskii and Ibragimov on Gaussian processes. Efficient estimators are then constructed for these functionals. In the case of linear functionals these estimators are given for all dimensions. For non-linear integral functionals, these estimators are constructed for the two and three dimensional problems.

Estimation of anisotropic gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2008)

ESAIM: Probability and Statistics

We estimate the anisotropic index of an anisotropic fractional brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional brownian field and prove that these processes admit...

Estimation of anisotropic Gaussian fields through Radon transform

Hermine Biermé, Frédéric Richard (2007)

ESAIM: Probability and Statistics

We estimate the anisotropic index of an anisotropic fractional Brownian field. For all directions, we give a convergent estimator of the value of the anisotropic index in this direction, based on generalized quadratic variations. We also prove a central limit theorem. First we present a result of identification that relies on the asymptotic behavior of the spectral density of a process. Then, we define Radon transforms of the anisotropic fractional Brownian field and prove that these processes...

Currently displaying 1 – 4 of 4

Page 1