Page 1

Displaying 1 – 3 of 3

Showing per page

Evolutionary learning of rich neural networks in the Bayesian model selection framework

Matteo Matteucci, Dario Spadoni (2004)

International Journal of Applied Mathematics and Computer Science

In this paper we focus on the problem of using a genetic algorithm for model selection within a Bayesian framework. We propose to reduce the model selection problem to a search problem solved using evolutionary computation to explore a posterior distribution over the model space. As a case study, we introduce ELeaRNT (Evolutionary Learning of Rich Neural Network Topologies), a genetic algorithm which evolves a particular class of models, namely, Rich Neural Networks (RNN), in order to find an optimal...

Exploring the impact of post-training rounding in regression models

Jan Kalina (2024)

Applications of Mathematics

Post-training rounding, also known as quantization, of estimated parameters stands as a widely adopted technique for mitigating energy consumption and latency in machine learning models. This theoretical endeavor delves into the examination of the impact of rounding estimated parameters in key regression methods within the realms of statistics and machine learning. The proposed approach allows for the perturbation of parameters through an additive error with values within a specified interval. This...

Extraction of fuzzy logic rules from data by means of artificial neural networks

Martin Holeňa (2005)

Kybernetika

The extraction of logical rules from data has been, for nearly fifteen years, a key application of artificial neural networks in data mining. Although Boolean rules have been extracted in the majority of cases, also methods for the extraction of fuzzy logic rules have been studied increasingly often. In the paper, those methods are discussed within a five-dimensional classification scheme for neural-networks based rule extraction, and it is pointed out that all of them share the feature of being...

Currently displaying 1 – 3 of 3

Page 1