### A challenging test for convergence accelerators: summation of a series with a special sign pattern.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

In this paper we study the finite element approximations to the Sobolev and viscoelasticity type equations and present a direct analysis for global superconvergence for these problems, without using Ritz projection or its modified forms.

A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and semilinear problems on a very low dimensional space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient numerical methods can also serve as...

A new Schwarz method for nonlinear systems is presented, constituting the multiplicative variant of a straightforward additive scheme. Local convergence can be guaranteed under suitable assumptions. The scheme is applied to nonlinear acoustic-structure interaction problems. Numerical examples validate the theoretical results. Further improvements are discussed by means of introducing overlapping subdomains and employing an inexact strategy for the local solvers.

In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the ${P}_{0}^{2}-{P}_{1}$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results.

We present an iterative method based on an infinite dimensional adaptation of the successive overrelaxation (SOR) algorithm for solving the 2-D neutron transport equation. In a wide range of application, the neutron transport operator admits a Self-Adjoint and m-Accretive Splitting (SAS). This splitting leads to an ADI-like iterative method which converges unconditionally and is equivalent to a fixed point problem where the operator is a 2 by 2 matrix...

In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165–1178] and Gardini [ESAIM: M2AN 43 (2009) 853–865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic...