Oblique projection methods for linear systems with multiple right-hand sides.
For p ≤ n, let b1(n),...,bp(n) be independent random vectors in with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...
Lanczos method for solving a system of linear equations is well known. It is derived from a generalization of the method of moments and one of its main interests is that it provides the exact answer in at most n steps where n is the dimension of the system. Lanczos method can be implemented via several recursive algorithms known as Orthodir, Orthomin, Orthores, Biconjugate gradient,... In this paper, we show that all these procedures can be explained within the framework of formal orthogonal polynomials....