On a Class of Jacobi-Like Procedures for Diagonalising Arbitrary Real Matrices.
In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by and , where , . The notation represents an interval system of linear equations, where and are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm...
The methods of the transfer of conditions are generalized so that they also cover the direct methods leading to the diagonalization of the original matrix of a system with a band matrix. Part 3 is devoted to the numerical stability of methods of the transfer of conditions described in author's previous paper. Finally, it is shown how to obtain a particular method by the choice parameters of the general algorithm.
In this paper explicit expressions for solutions of Cauchy problems and two-point boundary value problems concerned with the generalized Riccati matrix differential equation are given. These explicit expressions are computable in terms of the data and solutions of certain algebraic Riccati equations related to the problem. The interplay between the algebraic and the differential problems is used in order to obtain approximate solutions of the differential problem in terms of those of the algebraic...