Previous Page 3

Displaying 41 – 60 of 60

Showing per page

Monotone interval eigenproblem in max–min algebra

Martin Gavalec, Ján Plavka (2010)

Kybernetika

The interval eigenproblem in max-min algebra is studied. A classification of interval eigenvectors is introduced and six types of interval eigenvectors are described. Characterization of all six types is given for the case of strictly increasing eigenvectors and Hasse diagram of relations between the types is presented.

Nonsingularity and P -matrices.

Jiří Rohn (1990)

Aplikace matematiky

New proofs of two previously published theorems relating nonsingularity of interval matrices to P -matrices are given.

On an algorithm for testing T4 solvability of max-plus interval systems

Helena Myšková (2012)

Kybernetika

In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by and , where a b = max { a , b } , a b = a + b . The notation 𝔸 x = 𝕓 represents an interval system of linear equations, where 𝔸 = [ b ¯ , A ¯ ] and 𝕓 = [ b ̲ , b ¯ ] are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm...

On the Arithmetic of Errors

Markov, Svetoslav, Hayes, Nathan (2010)

Serdica Journal of Computing

An approximate number is an ordered pair consisting of a (real) number and an error bound, briefly error, which is a (real) non-negative number. To compute with approximate numbers the arithmetic operations on errors should be well-known. To model computations with errors one should suitably define and study arithmetic operations and order relations over the set of non-negative numbers. In this work we discuss the algebraic properties of non-negative numbers starting from familiar properties of...

Currently displaying 41 – 60 of 60

Previous Page 3