Previous Page 9

Displaying 161 – 177 of 177

Showing per page

Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions

Sergey Korotov (2007)

Applications of Mathematics

The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered...

Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties

Andreas Rauh, Johanna Minisini, Eberhard P. Hofer (2009)

International Journal of Applied Mathematics and Computer Science

Control strategies for nonlinear dynamical systems often make use of special system properties, which are, for example, differential flatness or exact input-output as well as input-to-state linearizability. However, approaches using these properties are unavoidably limited to specific classes of mathematical models. To generalize design procedures and to account for parameter uncertainties as well as modeling errors, an interval arithmetic approach for verified simulation of continuoustime dynamical...

Verified numerical computations for large-scale linear systems

Katsuhisa Ozaki, Takeshi Terao, Takeshi Ogita, Takahiro Katagiri (2021)

Applications of Mathematics

This paper concerns accuracy-guaranteed numerical computations for linear systems. Due to the rapid progress of supercomputers, the treatable problem size is getting larger. The larger the problem size, the more rounding errors in floating-point arithmetic can accumulate in general, and the more inaccurate numerical solutions are obtained. Therefore, it is important to verify the accuracy of numerical solutions. Verified numerical computations are used to produce error bounds on numerical solutions....

Weaker convergence conditions for the secant method

Ioannis K. Argyros, Saïd Hilout (2014)

Applications of Mathematics

We use tighter majorizing sequences than in earlier studies to provide a semilocal convergence analysis for the secant method. Our sufficient convergence conditions are also weaker. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.

Currently displaying 161 – 177 of 177

Previous Page 9