A remark on certain overdetermined systems of partial differential equations
In order to save CPU-time in solving large systems of equations in function spaces we decompose the large system in subsystems and solve the subsystems by an appropriate method. We give a sufficient condition for the convergence of the corresponding procedure and apply the approach to differential algebraic systems.
In this paper we introduce the notion of "-dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form , . As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.