Fast intersection methods for the solution of some nonlinear systems of equations.
A recent result of Bahouri shows that continuation from an open set fails in general for solutions of where and is a (nonelliptic) operator in satisfying Hörmander’s condition for hypoellipticity. In this paper we study the model case when is the subelliptic Laplacian on the Heisenberg group and is a zero order term which is allowed to be unbounded. We provide a sufficient condition, involving a first order differential inequality, for nontrivial solutions of to have a finite order...
In this paper, we discuss the globalization of some kind of modified Levenberg-Marquardt methods for nonsmooth equations and their applications to nonlinear complementarity problems. In these modified Levenberg-Marquardt methods, only an approximate solution of a linear system at each iteration is required. Under some mild assumptions, the global convergence is shown. Finally, numerical results show that the present methods are promising.
It is shown that if the concept of an interval solution to a system of linear interval equations given by Ratschek and Sauer is slightly modified, then only two nonlinear equations are to be solved to find a modified interval solution or to verify that no such solution exists.