Second-order differential proximal methods for equilibrium problems.
The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed...
We consider some abstract nonlinear equations in a separable Hilbert space and some class of approximate equations on closed linear subspaces of . The main result concerns stability with respect to the approximation of the space . We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of . The abstract results are...