On a certain algorithm of eigenvalue localization for normal operators
Two simple methods for approximate determination of eigenvalues and eigenvectors of linear self-adjoint operators are considered in the following two cases: (i) lower-upper bound of the spectrum of is an isolated point of ; (ii) (not necessarily an isolated point of with finite multiplicity) is an eigenvalue of .
In this paper we prove that the convergence of (T - Tn)Tn-k to zero in operator norm (plus some technical conditions) is a sufficient condition for Tn to be a strongly stable approximation to T, thus extending some previous results existing in the literature.
MSC 2010: 26A33, 44A45, 44A40, 65J10We consider a linear system of differential equations with fractional derivatives, and its corresponding system in the field of Mikusiński operators, written in a matrix form, by using the connection between the fractional and the Mikusiński calculus. The exact and the approximate operational solution of the corresponding matrix equations, with operator entries are determined, and their characters are analyzed. By using the packages Scientific Work place and...