Error estimates of a numerical method for a class of nonlinear evolution equations
We use a two-point Newton-like method to approximate a locally unique solution of a nonlinear equation containing a non-differentiable term in a Banach space setting. Using more precise majorizing sequences than in earlier studies, we present a tighter semi-local and local convergence analysis and weaker convergence criteria. This way we expand the applicability of these methods. Numerical examples are provided where the old convergence criteria do not hold but the new convergence criteria are satisfied....
We extend the applicability of Newton's method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Pták. We obtain new sufficient convergence conditions for Newton's method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F. A. Potra, V. Pták, Sharp error bounds for Newton's process, Numer. Math., 34 (1980), 63–72, and F. A. Potra, V. Pták, Nondiscrete...
Here we consider the solvability based on iterative algorithms of the generalized variational inequalities and associated nonlinear equations.
We discuss the problem of characterizing the possible asymptotic behaviour of the iterates of a sufficiently smooth nonlinear operator acting in a Banach space in small neighbourhoods of a fixed point. It turns out that under natural conditions, for the most part of initial approximations these iterates tend to "lie down" along a finite-dimensional subspace generated by the leading (peripherical) eigensubspaces of the Fréchet derivative at the fixed point and moreover the asymptotic behaviour of...
We present ball convergence results for Newton's method in order to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. Our hypotheses involve very general majorants on the Fréchet derivatives of the operators involved. In the special case of convex majorants our results, compared with earlier ones, have at least as large radius of convergence, no less tight error bounds on the distances involved, and no less precise information on the uniqueness of...
The paper develops semilocal convergence of Inexact Newton Method INM for approximating solutions of nonlinear equations in Banach space setting. We employ weak Lipschitz and center-weak Lipschitz conditions to perform the error analysis. The results obtained compare favorably with earlier ones in at least the case of Newton's Method (NM). Numerical examples, where our convergence criteria are satisfied but the earlier ones are not, are also explored.
We provide a semilocal convergence analysis for approximating a solution of an equation in a Banach space setting using an inexact Newton method. By using recurrent functions, we provide under the same or weaker hypotheses: finer error bounds on the distances involved, and an at least as precise information on the location of the solution as in earlier papers. Moreover, if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained. Furthermore, numerical...