Previous Page 3

Displaying 41 – 46 of 46

Showing per page

Symmetric parareal algorithms for hamiltonian systems

Xiaoying Dai, Claude Le Bris, Frédéric Legoll, Yvon Maday (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The parareal in time algorithm allows for efficient parallel numerical simulations of time-dependent problems. It is based on a decomposition of the time interval into subintervals, and on a predictor-corrector strategy, where the propagations over each subinterval for the corrector stage are concurrently performed on the different processors that are available. In this article, we are concerned with the long time integration of Hamiltonian systems. Geometric, structure-preserving integrators are...

Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems

Serge Piperno (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...

Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems

Serge Piperno (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exactly conserved. However, the stability limit of the methods, related to the smallest elements in the mesh,...

Viscosity solutions methods for converse KAM theory

Diogo A. Gomes, Adam Oberman (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. To do so, we develop a set of explicit a-priori estimates for smooth solutions of Hamilton-Jacobi equations, using a combination of methods from viscosity solutions, KAM and Aubry-Mather theories. These estimates are valid in any space dimension, and can be checked numerically to detect gaps between KAM tori and Aubry-Mather sets. We apply these results to detect non-integrable regions in several...

Currently displaying 41 – 46 of 46

Previous Page 3