Wavelets
Wavelets (see [2, 3, 4]) are a recent mathematical tool that is applied in signal processing, numerical mathematics and statistics. The wavelet transform allows to follow data in the frequency as well as time domain, to compute efficiently the wavelet coefficients using fast algorithm, to separate approximations from details. Due to these properties, the wavelet transform is suitable for analyzing and forecasting in time series. In this paper, Box-Jenkins models (see [1, 5]) combined with wavelets...
In this paper the theory of wavelets on the integers is developed. For this, one needs to first find analogs of translations and dyadic dilations which appear in the classical theory. Translations in l2(Z) are defined in the obvious way, taking advantage of the additive group structure of the integers. Dyadic dilations, on the other hand, pose a greater problem. In the classical theory of wavelets on the real line, translation T and dyadic dilation T obey the commutativity relation DT^2 = TD. We...
We give conditions such that the least degree solution of a Bézout identity is nonnegative on the interval [-1,1].