A class of combinatorial problems with polynomially solvable large scale set covering/partitioning relaxations
We examine worst-case analysis from the standpoint of classical Decision Theory. We elucidate how this analysis is expressed in the framework of Wald's famous Maximin paradigm for decision-making under strict uncertainty. We illustrate the subtlety required in modeling this paradigm by showing that information-gap's robustness model is in fact a Maximin model in disguise.
We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.
Coalgebras have been proposed as formal basis for the semantics of objects in the sense of object-oriented programming. This paper shows that this semantics provides a smooth interpretation for subtyping, a central notion in object-oriented programming. We show that different characterisations of behavioural subtyping found in the literature can conveniently be expressed in coalgebraic terms. We also investigate the subtle difference between behavioural subtyping and refinement.
Coalgebras have been proposed as formal basis for the semantics of objects in the sense of object-oriented programming. This paper shows that this semantics provides a smooth interpretation for subtyping, a central notion in object-oriented programming. We show that different characterisations of behavioural subtyping found in the literature can conveniently be expressed in coalgebraic terms. We also investigate the subtle difference between behavioural subtyping and refinement.
Coalgebras for an endofunctor provide a category theoretic framework for modeling a wide range of state-based systems of various types. We provide an iterative construction of the reachable part of a given pointed coalgebra that is inspired by and resembles the standard breadth-first search procedure to compute the reachable part of a graph. We also study coalgebras in Kleisli categories: for a functor extending a functor on the base category, we show that the reachable part of a given pointed coalgebra...
We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower...
We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions...
Needs of feature selection in medium and large problems increases in many fields including medical and image processing fields. Previous comparative studies of feature selection algorithms are not satisfactory in problem size and in criterion function. In addition, no way has not shown to compare algorithms with different objectives. In this study, we propose a unified way to compare a large variety of algorithms. Our results show that the sequential floating algorithms promises for up to medium...
Microaggregation is a statistical disclosure control technique for microdata. Raw microdata (i.e. individual records) are grouped into small aggregates prior to publication. Each aggregate should contain at least k records to prevent disclosure of individual information. Fixed-size microaggregation consists of taking fixed-size microaggregates (size k). Data-oriented microaggregation (with variable group size) was introduced recently. Regardless of the group size, microaggregations on a multidimensional...