Radial level planarity testing and embedding in linear time.
We prove that the function that maps a word of a rational language onto its successor for the radix order in this language is a finite union of co-sequential functions.
This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion.We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky theorem,...
We prove that a word of length from a finitely ambiguous context-free language can be generated at random under uniform distribution in time by a probabilistic random access machine assuming a logarithmic cost criterion. We also show that the same problem can be solved in polynomial time for every language accepted by a polynomial time -NAuxPDA with polynomially bounded ambiguity.
We prove that a word of length n from a finitely ambiguous context-free language can be generated at random under uniform distribution in O(n2 log n) time by a probabilistic random access machine assuming a logarithmic cost criterion. We also show that the same problem can be solved in polynomial time for every language accepted by a polynomial time 1-NAuxPDA with polynomially bounded ambiguity.
Bayesian networks are a popular model for reasoning under uncertainty. We study the problem of efficient probabilistic inference with these models when some of the conditional probability tables represent deterministic or noisy -out-of- functions. These tables appear naturally in real-world applications when we observe a state of a variable that depends on its parents via an addition or noisy addition relation. We provide a lower bound of the rank and an upper bound for the symmetric border rank...
We give a general upper bound for the irrationality exponent of algebraic Laurent series with coefficients in a finite field. Our proof is based on a method introduced in a different framework by Adamczewski and Cassaigne. It makes use of automata theory and, in our context, of a classical theorem due to Christol. We then introduce a new approach which allows us to strongly improve this general bound in many cases. As an illustration, we give a few examples of algebraic Laurent series for which...