Eine beweistheoretische Anwendung partieller stetiger Funktionale.
The use of parallel computers makes it feasible to simulate elastic waves throughout large heterogeneous structures, and new domain decomposition methods can be used to increase their efficiency and decrease the computing time spent in the simulation. In this paper we introduce a simple parallel algorithm for the propagation of elastic waves in complex heterogeneous media after a finite element discretization. This method performs more efficiently than classic domain decomposition techniques based...
Let p be a prime number, p ≠ 2,3 and Fp the finite field with p elements. An elliptic curve E over Fp is a projective nonsingular curve of genus 1 defined over Fp. Each one of these curves has an isomorphic model given by an (Weierstrass) equation E: y2 = x3 + Ax + B, A,B ∈ Fp with D = 4A3 + 27B2 ≠ 0. The j-invariant of E is defined by j(E) = 1728·4A3/D.The aim of this note is to establish some results concerning the cardinality of the group of points on elliptic curves over Fp with j-invariants...
We inductively describe an embedding of a complete ternary tree Tₕ of height h into a hypercube Q of dimension at most ⎡(1.6)h⎤+1 with load 1, dilation 2, node congestion 2 and edge congestion 2. This is an improvement over the known embedding of Tₕ into Q. And it is very close to a conjectured embedding of Havel [3] which states that there exists an embedding of Tₕ into its optimal hypercube with load 1 and dilation 2. The optimal hypercube has dimension ⎡(log₂3)h⎤ ( = ⎡(1.585)h⎤) or ⎡(log₂3)h⎤+1....
It is well known that the k-ary n-cube has been one of the most efficient interconnection networks for distributed-memory parallel systems. A k-ary n-cube is bipartite if and only if k is even. Let (X,Y) be a bipartition of a k-ary 2-cube (even integer k ≥ 4). In this paper, we prove that for any two healthy vertices u ∈ X, v ∈ Y, there exists a hamiltonian path from u to v in the faulty k-ary 2-cube with one faulty vertex in each part.