Color-texture-based image retrieval system using Gaussian Markov random field model.
Prototype Selection (PS) techniques have traditionally been applied prior to Nearest Neighbour (NN) classification rules both to improve its accuracy (editing) and to alleviate its computational burden (condensing). Methods based on selecting/discarding prototypes and methods based on adapting prototypes have been separately introduced to deal with this problem. Different approaches to this problem are considered in this paper and their main advantages and drawbacks are pointed out along with some...
An important task of knowledge discovery deals with discovering association rules. This very general model has been widely studied and efficient algorithms have been proposed. But most of the time, only frequent rules are seeked. Here we propose to consider this problem as a multi-objective combinatorial optimization problem in order to be able to also find non frequent but interesting rules. As the search space may be very large, a discussion about different approaches is proposed and a hybrid...
We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than monadic least fixed point logic, which in turn is non-elementarily more succinct than monadic datalog. Succinctness...
We study the succinctness of monadic second-order logic and a variety of monadic fixed point logics on trees. All these languages are known to have the same expressive power on trees, but some can express the same queries much more succinctly than others. For example, we show that, under some complexity theoretic assumption, monadic second-order logic is non-elementarily more succinct than monadic least fixed point logic, which in turn is non-elementarily more succinct than monadic datalog. Succinctness...
In this paper, we present the simple and double compression algorithms with an error control for compressing satellite data corresponding to several revolutions. The compressions are performed by means of approximations in the norm L∞ by finite series of Chebyshev polynomials, with their known properties of fast evaluation, uniform distribution of the error, and validity over large intervals of time. By using the error control here introduced, the number of terms of the series is given automatically...
This paper introduces an encoding of knowledge representation statements as regular languages and proposes a two-phase approach to processing of explicitly declared conceptual information. The idea is presented for the simple conceptual graphs where conceptual pattern search is implemented by the so called projection operation. Projection calculations are organised into off-line preprocessing and run-time computations. This enables fast run-time treatment of NP-complete problems, given that the intermediate...
Huffman coding is one of a most famous entropy encoding methods for lossless data compression [16]. JPEG and ZIP formats employ variants of Huffman encoding as lossless compression algorithms. Huffman coding is a bijective map from source letters into leaves of the Huffman tree constructed by the algorithm. In this article we formalize an algorithm constructing a binary code tree, Huffman tree.
With the availability of very large data storage today, redundant data structures are no longer a big issue. However, an intelligent way of managing materialised projection and selection views that can lead to fast access of data is the central issue dealt with in this paper. A set of implementation steps for the data warehouse administrators or decision makers to improve the response time of queries is also defined. The study concludes that both attributes and tuples, are important factors to be...