Decomposing a -valued transducer into unambiguous ones
Beame, Cook and Hoover were the first to exhibit a log-depth, polynomial size circuit family for integer division. However, the family was not logspace-uniform. In this paper we describe log-depth, polynomial size, logspace-uniform, i.e., circuit family for integer division. In particular, by a well-known result this shows that division is in logspace. We also refine the method of the paper to show that division is in dlogtime-uniform .
Beame, Cook and Hoover were the first to exhibit a log-depth, polynomial size circuit family for integer division. However, the family was not logspace-uniform. In this paper we describe log-depth, polynomial size, logspace-uniform, i.e., NC1 circuit family for integer division. In particular, by a well-known result this shows that division is in logspace. We also refine the method of the paper to show that division is in dlogtime-uniform NC1.
We introduce a domain-free λµ-calculus of call-by-value as a short-hand for the second order Church-style. Our motivation comes from the observation that in Curry-style polymorphic calculi, control operators such as callcc-operators cannot, in general, handle correctly the terms placed on the control operator's left, so that the Curry-style system can fail to prove the subject reduction property. Following the continuation semantics, we also discuss the notion of values in classical system,...