Page 1

Displaying 1 – 6 of 6

Showing per page

Polyabelian loops and Boolean completeness

François Lemieux, Cristopher Moore, Denis Thérien (2000)

Commentationes Mathematicae Universitatis Carolinae

We consider the question of which loops are capable of expressing arbitrary Boolean functions through expressions of constants and variables. We call this property Boolean completeness. It is a generalization of functional completeness, and is intimately connected to the computational complexity of various questions about expressions, circuits, and equations defined over the loop. We say that a loop is polyabelian if it is an iterated affine quasidirect product of Abelian groups; polyabelianness...

Polynomial time algorithms for two classes of subgraph problem

Sriraman Sridharan (2008)

RAIRO - Operations Research

We design a O(n3) polynomial time algorithm for finding a (k-1)- regular subgraph in a k-regular graph without any induced star K1,3(claw-free). A polynomial time algorithm for finding a cubic subgraph in a 4-regular locally connected graph is also given. A family of k-regular graphs with an induced star K1,3 (k even, k ≥ 6), not containing any (k-1)-regular subgraph is also constructed.

Polynomial time bounded truth-table reducibilities to padded sets

Vladimír Glasnák (2000)

Commentationes Mathematicae Universitatis Carolinae

We study bounded truth-table reducibilities to sets of small information content called padded (a set is in the class f -PAD of all f -padded sets, if it is a subset of { x 10 f ( | x | ) - | x | - 1 ; x { 0 , 1 } * } ). This is a continuation of the research of reducibilities to sparse and tally sets that were studied in many previous papers (for a good survey see [HOW1]). We show necessary and sufficient conditions to collapse and separate classes of bounded truth-table reducibilities to padded sets. We prove that depending on two properties of a...

Polynomially Bounded Sequences and Polynomial Sequences

Hiroyuki Okazaki, Yuichi Futa (2015)

Formalized Mathematics

In this article, we formalize polynomially bounded sequences that plays an important role in computational complexity theory. Class P is a fundamental computational complexity class that contains all polynomial-time decision problems [11], [12]. It takes polynomially bounded amount of computation time to solve polynomial-time decision problems by the deterministic Turing machine. Moreover we formalize polynomial sequences [5].

Currently displaying 1 – 6 of 6

Page 1