Displaying 221 – 240 of 532

Showing per page

Job shop scheduling with unit length tasks

Meike Akveld, Raphael Bernhard (2012)

RAIRO - Theoretical Informatics and Applications

In this paper, we consider a class of scheduling problems that are among the fundamental optimization problems in operations research. More specifically, we deal with a particular version called job shop scheduling with unit length tasks. Using the results of Hromkovič, Mömke, Steinhöfel, and Widmayer presented in their work Job Shop Scheduling with Unit Length Tasks: Bounds and Algorithms, we analyze the problem setting for 2 jobs with an unequal...

Labeled shortest paths in digraphs with negative and positive edge weights

Phillip G. Bradford, David A. Thomas (2009)

RAIRO - Theoretical Informatics and Applications

This paper gives a shortest path algorithm for CFG (context free grammar) labeled and weighted digraphs where edge weights may be positive or negative, but negative-weight cycles are not allowed in the underlying unlabeled graph. These results build directly on an algorithm of Barrett et al. [SIAM J. Comput.30 (2000) 809–837]. In addition to many other results, they gave a shortest path algorithm for CFG labeled and weighted digraphs where all edges are nonnegative. Our algorithm is based closely...

Measuring the problem-relevant information in input

Stefan Dobrev, Rastislav Královič, Dana Pardubská (2009)

RAIRO - Theoretical Informatics and Applications

We propose a new way of characterizing the complexity of online problems. Instead of measuring the degradation of the output quality caused by the ignorance of the future we choose to quantify the amount of additional global information needed for an online algorithm to solve the problem optimally. In our model, the algorithm cooperates with an oracle that can see the whole input. We define the advice complexity of the problem to be the minimal number of bits (normalized per input request, and...

Mince zajímají nejen numismatiky

Ľubomíra Dvořáková, Marie Dohnalová (2017)

Pokroky matematiky, fyziky a astronomie

V článku představíme dva druhy úloh týkajících se platby mincemi, které souvisejí s optimalitou počtu použitých mincí. V případě problému platby (říká se také rozměňování — anglicky change making problem), tj. skládání částky z mincí bez možnosti vracení, jsou úlohy spojené s optimalitou dobře prozkoumané. Analogické úlohy zformulujeme pro směnu, tj. skládání částky z mincí s možností vracení. Zde zůstává naopak řada problémů otevřená.

Currently displaying 221 – 240 of 532