The conjugacy map over a Sturmian word.
The box parameter for words counts how often two letters w j and w k define a “box” such that all the letters w j+1; ..., w k−1 fall into that box. It is related to the visibility parameter and other parameters on words. Three models are considered: Words over a finite alphabet, permutations, and words with letters following a geometric distribution. A typical result is: The average box parameter for words over an M letter alphabet is asymptotically given by 2n − 2n H M/M, for fixed M and n → ∞.
We consider directed figures defined as labelled polyominoes with designated start and end points, with two types of catenation operations. We are especially interested in codicity verification for sets of figures, and we show that depending on the catenation type the question whether a given set of directed figures is a code is decidable or not. In the former case we give a constructive proof which leads to a straightforward algorithm.
We consider directed figures defined as labelled polyominoes with designated start and end points, with two types of catenation operations. We are especially interested in codicity verification for sets of figures, and we show that depending on the catenation type the question whether a given set of directed figures is a code is decidable or not. In the former case we give a constructive proof which leads to a straightforward algorithm.
We investigate the lattice of machine invariant classes. This is an infinite completely distributive lattice but it is not a Boolean lattice. The length and width of it is c. We show the subword complexity and the growth function create machine invariant classes.
Generalizing the results of Thue (for n = 2) [Norske Vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67] and of Klepinin and Sukhanov (for n = 3) [Discrete Appl. Math. 114 (2001) 155–169], we prove that for all n ≥ 2, the critical exponent of the Arshon word of order n is given by (3n–2)/(2n–2), and this exponent is attained at position 1.
We consider binary rotation words generated by partitions of the unit circle to two intervals and give a precise formula for the number of such words of length n. We also give the precise asymptotics for it, which happens to be Θ(n4). The result continues the line initiated by the formula for the number of all Sturmian words obtained by Lipatov [Problemy Kibernet. 39 (1982) 67–84], then independently by Mignosi [Theoret. Comput. Sci. 82 (1991) 71–84], and others.
We consider relational periods, where the relation is a compatibility relation on words induced by a relation on letters. We prove a variant of the theorem of Fine and Wilf for a (pure) period and a relational period.
We consider relational periods, where the relation is a compatibility relation on words induced by a relation on letters. We prove a variant of the theorem of Fine and Wilf for a (pure) period and a relational period.