Factor complexity of infinite words associated with non-simple Parry numbers.
We describe factor frequencies of the generalized Thue-Morse word defined for , as the fixed point starting in of the morphism where and where the letters are expressed modulo . We...
A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and...
A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and...
A square is the concatenation of a nonempty word with itself. A word has period p if its letters at distance p match. The exponent of a nonempty word is the quotient of its length over its smallest period. In this article we give a proof of the fact that there exists an infinite binary word which contains finitely many squares and simultaneously avoids words of exponent larger than 7/3. Our infinite word contains 12 squares, which is the smallest possible number of squares to get the property, and...
This paper is the first step in the solution of the problem of finite completion of comma-free codes. We show that every finite comma-free code is included in a finite comma-free code of particular kind, which we called, for lack of a better term, canonical comma-free code. Certainly, finite maximal comma-free codes are always canonical. The final step of the solution which consists in proving further that every canonical comma-free code is completed to a finite maximal comma-free code, is intended...
This paper is the first step in the solution of the problem of finite completion of comma-free codes. We show that every finite comma-free code is included in a finite comma-free code of particular kind, which we called, for lack of a better term, canonical comma-free code. Certainly, finite maximal comma-free codes are always canonical. The final step of the solution which consists in proving further that every canonical comma-free code is completed to a finite maximal comma-free code, is intended...
This paper is a sequel to an earlier paper of the present author, in which it was proved that every finite comma-free code is embedded into a so-called (finite) canonical comma-free code. In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite maximal comma-free code, which thus achieves the conclusion that every finite comma-free code has finite completions.
This paper is a sequel to an earlier paper of the present author, in which it was proved that every finite comma-free code is embedded into a so-called (finite) canonical comma-free code. In this paper, it is proved that every (finite) canonical comma-free code is embedded into a finite maximal comma-free code, which thus achieves the conclusion that every finite comma-free code has finite completions.
We investigate the finite repetition threshold for k-letter alphabets, k ≥ 4, that is the smallest number r for which there exists an infinite r+-free word containing a finite number of r-powers. We show that there exists an infinite Dejean word on a 4-letter alphabet (i.e. a word without factors of exponent more than 7/5 ) containing only two 7/5 -powers. For a 5-letter alphabet, we show that there exists an infinite Dejean word containing only 60 5/4 -powers, and we conjecture that this number...
We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.
The fixed point submonoid of an endomorphism of a free product of a free monoid and cyclic groups is proved to be rational using automata-theoretic techniques. Maslakova’s result on the computability of the fixed point subgroup of a free group automorphism is generalized to endomorphisms of free products of a free monoid and a free group which are automorphisms of the maximal subgroup.
The fixed point submonoid of an endomorphism of a free product of a free monoid and cyclic groups is proved to be rational using automata-theoretic techniques. Maslakova’s result on the computability of the fixed point subgroup of a free group automorphism is generalized to endomorphisms of free products of a free monoid and a free group which are automorphisms of the maximal subgroup.
La fonction de récurrence d’une suite symbolique compte au bout de combien de temps on voit tous les mots de longueur . Nous la calculons explicitement pour les suites d’Arnoux-Rauzy, définies par des conditions combinatoires qui en font une généralisation naturelle des suites sturmiennes. Puis nous répondons à une question de Morse et Hedlund (1940) en montrant que ne peut avoir une limite finie pour aucune suite non ultimement périodique.
In this paper methods and results related to the notion of minimal forbidden words are applied to the fragment assembly problem. The fragment assembly problem can be formulated, in its simplest form, as follows: reconstruct a word from a given set of substrings (fragments) of a word . We introduce an hypothesis involving the set of fragments and the maximal length of the minimal forbidden factors of . Such hypothesis allows us to reconstruct uniquely the word from the set in linear...
In this paper methods and results related to the notion of minimal forbidden words are applied to the fragment assembly problem. The fragment assembly problem can be formulated, in its simplest form, as follows: reconstruct a word w from a given set I of substrings (fragments) of a word w. We introduce an hypothesis involving the set of fragments I and the maximal length m(w) of the minimal forbidden factors of w. Such hypothesis allows us to reconstruct uniquely the word w from the set I in linear...