Decimations and sturmian words
We consider the defect theorem in the context of labelled polyominoes, i.e., two-dimensional figures. The classical version of this property states that if a set of n words is not a code then the words can be expressed as a product of at most n - 1 words, the smaller set being a code. We survey several two-dimensional extensions exhibiting the boundaries where the theorem fails. In particular, we establish the defect property in the case of three dominoes (n × 1 or 1 × n rectangles).
We prove two cases of a strong version of Dejean's conjecture involving extremal letter frequencies. The results are that there exist an infinite -free word over a 5 letter alphabet with letter frequency and an infinite -free word over a 6 letter alphabet with letter frequency .
We show that Dejean's conjecture holds for n ≥ 27. This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
We investigate the density of critical factorizations of infinite sequences of words. The density of critical factorizations of a word is the ratio between the number of positions that permit a critical factorization, and the number of all positions of a word. We give a short proof of the Critical Factorization Theorem and show that the maximal number of noncritical positions of a word between two critical ones is less than the period of that word. Therefore, we consider only words of index one,...
We investigate the density of critical factorizations of infinite sequences of words. The density of critical factorizations of a word is the ratio between the number of positions that permit a critical factorization, and the number of all positions of a word. We give a short proof of the Critical Factorization Theorem and show that the maximal number of noncritical positions of a word between two critical ones is less than the period of that word. Therefore, we consider only words of...
In this paper, we consider a possible representation of a DNA sequence in a quaternary tree, in which one can visualize repetitions of subwords (seen as suffixes of subsequences). The CGR-tree turns a sequence of letters into a Digital Search Tree (DST), obtained from the suffixes of the reversed sequence. Several results are known concerning the height, the insertion depth for DST built from independent successive random sequences having the same distribution. Here the successive inserted words...
Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing the same episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence...
Episturmian morphisms constitute a powerful tool to study episturmian words. Indeed, any episturmian word can be infinitely decomposed over the set of pure episturmian morphisms. Thus, an episturmian word can be defined by one of its morphic decompositions or, equivalently, by a certain directive word. Here we characterize pairs of words directing the same episturmian word. We also propose a way to uniquely define any episturmian word through a normalization of its directive words. As a consequence...
We introduce two-dimensional substitutions generating two-dimensional sequences related to discrete approximations of irrational planes. These two-dimensional substitutions are produced by the classical Jacobi-Perron continued fraction algorithm, by the way of induction of a -action by rotations on the circle. This gives a new geometric interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space of -actions by rotations.
In this article, we study the complexity of drunken man infinite words. We show that these infinite words, generated by a deterministic and complete countable automaton, or equivalently generated by a substitution over a countable alphabet of constant length, have complexity functions equivalent to n(log2n)2 when n goes to infinity.
This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to -numeration and its generalisations, abstract numeration systems and...