Page 1

Displaying 1 – 12 of 12

Showing per page

Neural methods for obtaining fuzzy rules.

José Manuel Benítez, Armando Blanco, Miguel Delgado, Ignacio Requena (1996)

Mathware and Soft Computing

In previous papers, we presented an empirical methodology based on Neural Networks for obtaining fuzzy rules which allow a system to be described, using a set of examples with the corresponding inputs and outputs. Now that the previous results have been completed, we present another procedure for obtaining fuzzy rules, also based on Neural Networks with Backpropagation, with no need to establish beforehand the labels or values of the variables that govern the system.

Neural network based identification of hysteresis in human meridian systems

Yonghong Tan, Ruili Dong, Hui Chen, Hong He (2012)

International Journal of Applied Mathematics and Computer Science

Developing a model based digital human meridian system is one of the interesting ways of understanding and improving acupuncture treatment, safety analysis for acupuncture operation, doctor training, or treatment scheme evaluation. In accomplishing this task, how to construct a proper model to describe the behavior of human meridian systems is one of the very important issues. From experiments, it has been found that the hysteresis phenomenon occurs in the relations between stimulation input and...

Neural network realizations of Bayes decision rules for exponentially distributed data

Igor Vajda, Belomír Lonek, Viktor Nikolov, Arnošt Veselý (1998)

Kybernetika

For general Bayes decision rules there are considered perceptron approximations based on sufficient statistics inputs. A particular attention is paid to Bayes discrimination and classification. In the case of exponentially distributed data with known model it is shown that a perceptron with one hidden layer is sufficient and the learning is restricted to synaptic weights of the output neuron. If only the dimension of the exponential model is known, then the number of hidden layers will increase...

Neural networks learning as a multiobjective optimal control problem.

Maciej Krawczak (1997)

Mathware and Soft Computing

The supervised learning process of multilayer feedforward neural networks can be considered as a class of multi-objective, multi-stage optimal control problem. An iterative parametric minimax method is proposed in which the original optimization problem is embedded into a weighted minimax formulation. The resulting auxiliary parametric optimization problems at the lower level have simple structures that are readily tackled by efficient solution methods, such as the dynamic programming or the error...

Neuro-fuzzy modelling based on a deterministic annealing approach

Robert Czabański (2005)

International Journal of Applied Mathematics and Computer Science

This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty of the learning...

New aspects on extraction of fuzzy rules using neural networks.

José Manuel Benítez, Armando Blanco, Miguel Delgado, Ignacio Requena (1998)

Mathware and Soft Computing

In previous works, we have presented two methodologies to obtain fuzzy rules in order to describe the behaviour of a system. We have used Artificial Neural Netorks (ANN) with the Backpropagation algorithm, and a set of examples of the system. In this work, some modifications which allow to improve the results, by means of an adaptation or refinement of the variable labels in each rule, or the extraction of local rules using distributed ANN, are showed. An interesting application on the assignement...

Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms

Bogdan Trawiński, Magdalena Smętek, Zbigniew Telec, Tadeusz Lasota (2012)

International Journal of Applied Mathematics and Computer Science

In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures devised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten different tests showing that the...

Note on universal algorithms for learning theory

Karol Dziedziul, Barbara Wolnik (2007)

Applicationes Mathematicae

We study the universal estimator for the regression problem in learning theory considered by Binev et al. This new approach allows us to improve their results.

Currently displaying 1 – 12 of 12

Page 1