Page 1

Displaying 1 – 11 of 11

Showing per page

Data mining techniques using decision tree model in materialised projection and selection view.

Y. W. Teh (2004)

Mathware and Soft Computing

With the availability of very large data storage today, redundant data structures are no longer a big issue. However, an intelligent way of managing materialised projection and selection views that can lead to fast access of data is the central issue dealt with in this paper. A set of implementation steps for the data warehouse administrators or decision makers to improve the response time of queries is also defined. The study concludes that both attributes and tuples, are important factors to be...

Data probes, vertical trajectories and classification: a tentative study

David Pearson (2007)

International Journal of Applied Mathematics and Computer Science

In this paper we introduce a method of classification based on data probes. Data points are considered as point masses in space and a probe is simply a particle that is launched into the space. As the probe passes by data clusters, its trajectory will be influenced by the point masses. We use this information to help us to find vertical trajectories. These are trajectories in the input space that are mapped onto the same value in the output space and correspond to the data classes.

Data-driven models for fault detection using kernel PCA: A water distribution system case study

Adam Nowicki, Michał Grochowski, Kazimierz Duzinkiewicz (2012)

International Journal of Applied Mathematics and Computer Science

Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system's framework is followed by...

Decomposition of high dimensional pattern spaces for hierarchical classification

Rajeev Kumar, Peter I Rockett (1998)

Kybernetika

In this paper we present a novel approach to decomposing high dimensional spaces using a multiobjective genetic algorithm for identifying (near-)optimal subspaces for hierarchical classification. This strategy of pre-processing the data and explicitly optimising the partitions for subsequent mapping onto a hierarchical classifier is found to both reduce the learning complexity and the classification time with no degradation in overall classification error rate. Results of partitioning pattern spaces...

Denoising Manifolds for Dimension

Jammalamadaka, Arvind K. (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 68T01, 62H30, 32C09.Locally Linear Embedding (LLE) has gained prominence as a tool in unsupervised non-linear dimensional reduction. While the algorithm aims to preserve certain proximity relations between the observed points, this may not always be desirable if the shape in higher dimensions that we are trying to capture is observed with noise. This note suggests that a desirable first step is to remove or at least reduce the noise in the observations before...

Density estimation with quadratic loss: a confidence intervals method

Pierre Alquier (2008)

ESAIM: Probability and Statistics

We propose a feature selection method for density estimation with quadratic loss. This method relies on the study of unidimensional approximation models and on the definition of confidence regions for the density thanks to these models. It is quite general and includes cases of interest like detection of relevant wavelets coefficients or selection of support vectors in SVM. In the general case, we prove that every selected feature actually improves the performance of the estimator. In the case...

Direct adaptive control of unknown nonlinear systems using a new neuro-fuzzy method together with a novel approach of parameter hopping

Dimitris Theodoridis, Yiannis Boutalis, Manolis Christodoulou (2009)

Kybernetika

The direct adaptive regulation for affine in the control nonlinear dynamical systems possessing unknown nonlinearities, is considered in this paper. The method is based on a new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Dynamical Systems (FDS) operating in conjunction with High Order Neural Network Functions (F-HONNFs). Since the plant is considered unknown, we first propose its approximation by a special form of a fuzzy dynamical system (FDS) and in the sequel the...

Dynamic estimation of evidence discounting rates based on information credibility

M. C. Florea, A.-L. Jousselme, É. Bossé (2010)

RAIRO - Operations Research

Information quality is crucial to any information fusion system as combining unreliable or partially credible pieces of information may lead to erroneous results. In this paper, Dempster-Shafer theory of evidence is being used as a framework for representing and combining uncertain pieces of information. We propose a method of dynamic estimation of evidence discounting rates based on the credibility of pieces of information. The credibility of a piece of information Cre(In) is evaluated through...

Dynamiques recuites de type Feynman-Kac : résultats précis et conjectures

Pierre Del Moral, Laurent Miclo (2006)

ESAIM: Probability and Statistics

Soit U une fonction définie sur un ensemble fini E muni d'un noyau markovien irréductible M. L'objectif du papier est de comparer théoriquement deux procédures stochastiques de minimisation globale de U : le recuit simulé et un algorithme génétique. Pour ceci on se placera dans la situation idéalisée d'une infinité de particules disponibles et nous ferons une hypothèse commode d'existence de suffisamment de symétries du cadre (E,M,U). On verra notamment que contrairement au recuit simulé, toute...

Currently displaying 1 – 11 of 11

Page 1