Page 1

Displaying 1 – 15 of 15

Showing per page

Efficiency-conscious propositionalization for relational learning

Filip Železný (2004)

Kybernetika

Systems aiming at discovering interesting knowledge in data, now commonly called data mining systems, are typically employed in finding patterns in a single relational table. Most of mainstream data mining tools are not applicable in the more challenging task of finding knowledge in structured data represented by a multi-relational database. Although a family of methods known as inductive logic programming have been developed to tackle that challenge by immediate means, the idea of adapting structured...

Employing different loss functions for the classification of images via supervised learning

Radu Boţ, André Heinrich, Gert Wanka (2014)

Open Mathematics

Supervised learning methods are powerful techniques to learn a function from a given set of labeled data, the so-called training data. In this paper the support vector machines approach is applied to an image classification task. Starting with the corresponding Tikhonov regularization problem, reformulated as a convex optimization problem, we introduce a conjugate dual problem to it and prove that, whenever strong duality holds, the function to be learned can be expressed via the dual optimal solutions....

Epoch-incremental reinforcement learning algorithms

Roman Zajdel (2013)

International Journal of Applied Mathematics and Computer Science

In this article, a new class of the epoch-incremental reinforcement learning algorithm is proposed. In the incremental mode, the fundamental TD(0) or TD(λ) algorithm is performed and an environment model is created. In the epoch mode, on the basis of the environment model, the distances of past-active states to the terminal state are computed. These distances and the reinforcement terminal state signal are used to improve the agent policy.

Estimating composite functions by model selection

Yannick Baraud, Lucien Birgé (2014)

Annales de l'I.H.P. Probabilités et statistiques

We consider the problem of estimating a function s on [ - 1 , 1 ] k for large values of k by looking for some best approximation of s by composite functions of the form g u . Our solution is based on model selection and leads to a very general approach to solve this problem with respect to many different types of functions g , u and statistical frameworks. In particular, we handle the problems of approximating s by additive functions, single and multiple index models, artificial neural networks, mixtures of Gaussian...

Evolutionary algorithms for job-shop scheduling

Khaled Mesghouni, Slim Hammadi, Pierre Borne (2004)

International Journal of Applied Mathematics and Computer Science

This paper explains how to use Evolutionary Algorithms (EA) to deal with a flexible job shop scheduling problem, especially minimizing the makespan. The Job-shop Scheduling Problem (JSP) is one of the most difficult problems, as it is classified as an NP-complete one (Carlier and Chretienne, 1988; Garey and Johnson, 1979). In many cases, the combination of goals and resources exponentially increases the search space, and thus the generation of consistently good scheduling is particularly difficult...

Evolutionary training for Dynamical Recurrent Neural Networks: an application in finantial time series prediction.

Miguel Delgado, M. Carmen Pegalajar, Manuel Pegalajar Cuéllar (2006)

Mathware and Soft Computing

Theoretical and experimental studies have shown that traditional training algorithms for Dynamical Recurrent Neural Networks may suffer of local optima solutions, due to the error propagation across the recurrence. In the last years, many researchers have put forward different approaches to solve this problem, most of them being based on heuristic procedures. In this paper, the training capabilities of evolutionary techniques are studied, for Dynamical Recurrent Neural Networks. The performance...

Evolution-fuzzy rule based system with parameterized consequences

Piotr Czekalski (2006)

International Journal of Applied Mathematics and Computer Science

While using automated learning methods, the lack of accuracy and poor knowledge generalization are both typical problems for a rule-based system obtained on a given data set. This paper introduces a new method capable of generating an accurate rule-based fuzzy inference system with parameterized consequences using an automated, off-line learning process based on multi-phase evolutionary computing and a training data covering algorithm. The presented method consists of the following steps: obtaining...

Evolving co-adapted subcomponents in assembler encoding

Tomasz Praczyk (2007)

International Journal of Applied Mathematics and Computer Science

The paper presents a new Artificial Neural Network (ANN) encoding method called Assembler Encoding (AE). It assumes that the ANN is encoded in the form of a program (Assembler Encoding Program, AEP) of a linear organization and of a structure similar to the structure of a simple assembler program. The task of the AEP is to create a Connectivity Matrix (CM) which can be transformed into the ANN of any architecture. To create AEPs, and in consequence ANNs, genetic algorithms (GAs) are used. In addition...

Experiments with two Approaches for Tracking Drifting Concepts

Koychev, Ivan (2007)

Serdica Journal of Computing

This paper addresses the task of learning classifiers from streams of labelled data. In this case we can face the problem that the underlying concepts can change over time. The paper studies two mechanisms developed for dealing with changing concepts. Both are based on the time window idea. The first one forgets gradually, by assigning to the examples weight that gradually decreases over time. The second one uses a statistical test to detect changes in concept and then optimizes the size of the...

Extraction of fuzzy logic rules from data by means of artificial neural networks

Martin Holeňa (2005)

Kybernetika

The extraction of logical rules from data has been, for nearly fifteen years, a key application of artificial neural networks in data mining. Although Boolean rules have been extracted in the majority of cases, also methods for the extraction of fuzzy logic rules have been studied increasingly often. In the paper, those methods are discussed within a five-dimensional classification scheme for neural-networks based rule extraction, and it is pointed out that all of them share the feature of being...

Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning

Robert Czabański (2006)

International Journal of Applied Mathematics and Computer Science

A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a "freezing" phase and ε-insensitive learning by solving a system of linear inequalities...

Currently displaying 1 – 15 of 15

Page 1