Displaying 21 – 40 of 118

Showing per page

Conway's Games and Some of their Basic Properties

Robin Nittka (2011)

Formalized Mathematics

We formulate a few basic concepts of J. H. Conway's theory of games based on his book [6]. This is a first step towards formalizing Conway's theory of numbers into Mizar, which is an approach to proving the existence of a FIELD (i.e., a proper class that satisfies the axioms of a real-closed field) that includes the reals and ordinals, thus providing a uniform, independent and simple approach to these two constructions that does not go via the rational numbers and hence does for example not need...

Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms

Marco Caminati (2011)

Formalized Mathematics

Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter....

Euler's Polyhedron Formula

Jesse Alama (2008)

Formalized Mathematics

Euler's polyhedron theorem states for a polyhedron p, thatV - E + F = 2,where V, E, and F are, respectively, the number of vertices, edges, and faces of p. The formula was first stated in print by Euler in 1758 [11]. The proof given here is based on Poincaré's linear algebraic proof, stated in [17] (with a corrected proof in [18]), as adapted by Imre Lakatos in the latter's Proofs and Refutations [15].As is well known, Euler's formula is not true for all polyhedra. The condition on polyhedra considered...

Evaluating many valued modus ponens

Dana Hliněná, Vladislav Biba (2012)

Kybernetika

This paper deals with many valued case of modus ponens. Cases with implicative and with clausal rules are studied. Many valued modus ponens via discrete connectives is studied with implicative rules as well as with clausal rules. Some properties of discrete modus ponens operator are given.

First Order Languages: Further Syntax and Semantics

Marco Caminati (2011)

Formalized Mathematics

Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced....

Formalization of Generalized Almost Distributive Lattices

Adam Grabowski (2014)

Formalized Mathematics

Almost Distributive Lattices (ADL) are structures defined by Swamy and Rao [14] as a common abstraction of some generalizations of the Boolean algebra. In our paper, we deal with a certain further generalization of ADLs, namely the Generalized Almost Distributive Lattices (GADL). Our main aim was to give the formal counterpart of this structure and we succeeded formalizing all items from the Section 3 of Rao et al.’s paper [13]. Essentially among GADLs we can find structures which are neither V-commutative...

Free Interpretation, Quotient Interpretation and Substitution of a Letter with a Term for First Order Languages

Marco Caminati (2011)

Formalized Mathematics

Fourth of a series of articles laying down the bases for classical first order model theory. This paper supplies a toolkit of constructions to work with languages and interpretations, and results relating them. The free interpretation of a language, having as a universe the set of terms of the language itself, is defined.The quotient of an interpreteation with respect to an equivalence relation is built, and shown to remain an interpretation when the relation respects it. Both the concepts of quotient...

Fuzzy grammatical inference using neural network.

Armando Blanco, A. Delgado, M. Carmen Pegalajar (1998)

Mathware and Soft Computing

We have shown a model of fuzzy neural network that is able to infer the relations associated to the transitions of a fuzzy automaton from a fuzzy examples set. Neural network is trained by a backpropagation of error based in a smooth derivative [1]. Once network has been trained the fuzzy relations associated to the transitions of the automaton are found encoded in the weights.

Fuzzy inference using a least square model.

Humberto Bustince, M. Calderón, Victoria Mohedano (1998)

Mathware and Soft Computing

In this paper, the method of least squares is applied to the fuzzy inference rules. We begin studying the conditions in which from a fuzzy set we can build another through the method of least squares. Then we apply this technique in order to evaluate the conclusions of the generalized modus ponens. We present different theorems and examples that demonstrate the fundamental advantages of the method studied.

Currently displaying 21 – 40 of 118