Loading [MathJax]/extensions/MathZoom.js
The regulator equation is the fundamental equation whose solution must be found in order to solve the output regulation problem. It is a system of first-order partial differential equations (PDE) combined with an algebraic equation. The classical approach to its solution is to use the Taylor series with undetermined coefficients. In this contribution, another path is followed: the equation is solved using the finite-element method which is, nevertheless, suitable to solve PDE part only. This paper...
This paper deals with the problem of controlling contact forces in robotic manipulators with general kinematics. The main focus is on control of grasping contact forces exerted on the manipulated object. A visco-elastic model for contacts is adopted. The robustness of the decoupling controller with respect to the uncertainties affecting system parameters is investigated. Sufficient conditions for the invariance of decoupling action under perturbations on the contact stiffness and damping parameters...
In the present paper we provide an interesting example of a non-degenerate precession possessing two distinct pairs , of axes of precession and figure. Thus the problem arises of the existence of classes of precessions possessing a unique axis of precession and a unique axis of figure. In the fourth section we show that the class of non-degenerate regular precessions enjoys this property.
This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method...
The application of Nekhoroshev theory to selected physical systems, interesting for Celestial Mechanics, is here reviewed. Applications include the stability of motions in the weakly perturbed Euler-Poinsot rigid body and the stability of the so-called Lagrangian equilibria , in the spatial circular restricted three-body problem. The difficulties to be overcome, which require a nontrivial extension of the standard Nekhoroshev theorem, are the presence of singularities in the fiber structure...
In this paper, a new control concept for a class of underactuated mechanical system is introduced. Namely, the class of -link chains, composed of rigid links, non actuated at the pivot point is considered. Underactuated mechanical systems are those having less actuators than degrees of freedom and thereby requiring more sophisticated nonlinear control methods. This class of systems includes among others frequently used for the modeling of walking planar structures. This paper presents the stabilization...
The paper deals with the control of underactuated mechanical systems between equilibrium positions across the singular positions. The considered mechanical systems are in the gravity field. The goal is to find feasible trajectory connecting the equilibrium positions that can be the basis of the system control. Such trajectory can be stabilized around both equilibrium positions and due to the gravity forces the mechanical system overcomes the singular positions. This altogether constitutes the control...
This paper is devoted to robust gain scheduled PID controller design with performance for the linear time varying (LPV) uncertain system with polytopic uncertainties. The novel approach of robust controller design ensures that the obtained design procedure is convex with respect to both plant uncertainties (polytopic system) and gain scheduling parameters and gives less conservative results. Modified design procedure should be used to obtain a robust controller or robust switched controller (ideal,...
We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as , to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.
Currently displaying 1 –
20 of
113