The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We characterize the geometry of a path in a sub-riemannian manifold using two metric invariants, the entropy and the complexity. The entropy of a subset of a metric space is the minimum number of balls of a given radius needed to cover . It allows one to compute the Hausdorff dimension in some cases and to bound it from above in general. We define the complexity of a path in a sub-riemannian manifold as the infimum of the lengths of all trajectories contained in an -neighborhood of the path,...
We characterize the geometry of a path in a sub-Riemannian manifold
using two metric invariants, the entropy and the complexity.
The entropy of a subset A of a metric space is the minimum number of
balls of a given radius ε needed to cover A.
It allows one to compute the Hausdorff dimension in some cases and
to bound it from above in general.
We define the complexity of a path in a sub-Riemannian manifold as the
infimum of the lengths of all trajectories contained in an
ε-neighborhood of the path,...
Currently displaying 1 –
3 of
3