The search session has expired. Please query the service again.
A -parametric robot manipulator is a mapping of into the homogeneous space represented by the formula , where is the Lie group of all congruences of and are fixed vectors from the Lie algebra of . In this paper the -parametric robot manipulator will be expressed as a function of rotations around its axes and an invariant of the motion of this robot manipulator will be given. Most of the results presented here have been obtained during the author’s stay at Charles University in Prague....
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
We study dynamics of singular Lagrangian systems described by implicit differential equations from a geometric point of view using the exterior differential systems approach. We analyze a concrete Lagrangian previously studied by other authors by methods of Dirac’s constraint theory, and find its complete dynamics.
A new geometrical setting for classical field theories is introduced. This description is strongly inspired by the one due to Skinner and Rusk for singular lagrangian systems. For a singular field theory a constraint algorithm is developed that gives a final constraint submanifold where a well-defined dynamics exists. The main advantage of this algorithm is that the second order condition is automatically included.
We obtain an algebraic interpretation by means of the Picard-Vessiot theory of a result by Ziglin about the self-intersection of complex separatrices of time-periodically perturbed one-degree of freedom complex analytical Hamiltonian systems.
Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.
In this paper we consider the system of Hamiltonian differential equations, which determines small oscillations of a dynamical system with n parameters. We demonstrate that this system determines an affinor structure J on the phase space TRⁿ. If J² = ωI, where ω = ±1,0, the phase space can be considered as the biplanar space of elliptic, hyperbolic or parabolic type. In the Euclidean case (Rⁿ = Eⁿ) we obtain the Hopf bundle and its analogs. The bases of these bundles are, respectively, the projective...
An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.
By using the ideas introduced by McGehee in the study of the singularities in some problems of Celestial Mechanics, we study the singularities at the origin and at the infinity for some classical mechanical systems with homogeneous kinetic and potential energy functions. For these systems the origin and the infinity of the configuration coordinates is usually a singularity or a nullity of the Hamiltonian function and the verctor field. This work generalizes a previous one by the first and the third...
Currently displaying 1 –
20 of
135