A finite element solution for plasticity with strain-hardening
In the plastic constitutive laws the yield functions are assumed to be linear in the stresses, but generally non-linear in the internal variables which are non-decreasing measures of the contribution to plastic strains by each face of the yield surface. The structural models referred to for simplicity are aggregates of constant-strain finite elements. Influence of geometry changes on equilibrium are allowed for in a linearized way (the equilibrium equation contains a bilinear term in the displacements...
The concept of reduced plastic dissipation is introduced for a perfectly plastic rate-independent material not obeyng the associated normality rule and characterized by a strictly convex plastic potential function. A maximum principle is provided and shown to play the role of variational statement for the nonassociative constitutive equations. The Kuhn-Tucker conditions of this principle describe the actual material behaviour as that of a (fictitious) composite material with two plastic constituents,...
The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry...