Il secondo suono nei cristalli : termodinamica ed equazioni costitutive
All internal constraints compatible with transverse isotropy are determined and representation formulae are given for the constitutive relations of arbitrarily constrained, transversely isotropic materials.
It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain is localized either at the whole lateral surface of the domain, or at a point of , while the eigenfunction decays exponentially inside . Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too.
Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a...
In an earlier study [16] the nonlinear behaviour of unimodular laminated plates was studied. This paper, following the previous study, concerns a large deflection analysis of moderately thick rectangular plates having arbitrary boundary conditions and finite thickness shear moduli. The plates are manufactured in bimodular materials and constructed in a cross-ply fashion or in a single layer with arbitrary fibre direction angle. Numerical results are obtained by a finite element technique in which...
We extend the well-known reciprocal theorems of linear elasticity to unbounded domains. The theorems do not require that the elastic body is isotropic and homogeneous.