Displaying 21 – 40 of 128

Showing per page

Comportamiento asintótico de las ecuaciones de la termoelasticidad generalizada.

Alberto Falqués Serra (1982)

Stochastica

In this paper it is first shown that the linear evolution equations for a generalized thermoelastic solid generate a C0 semigroup. Next an analysis of the long time evolution behaviour yields the some results known for classical thermoelasticity: generically, the natural state is asymptotically stable.

Dynamic stabilization of systems via decoupling techniques

Farid Ammar-Khodja, Ahmed Bader, Assia Benabdallah (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We give sufficient conditions which allow the study of the exponential stability of systems closely related to the linear thermoelasticity systems by a decoupling technique. Our approach is based on the multipliers technique and our result generalizes (from the exponential stability point of view) the earlier one obtained by Henry et al.

Exponential decay to partially thermoelastic materials

Jaime E. Muñoz Rivera, Vanilde Bisognin, Eleni Bisognin (2002)

Bollettino dell'Unione Matematica Italiana

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.

Currently displaying 21 – 40 of 128