Page 1

Displaying 1 – 2 of 2

Showing per page

A Dynamic Frictionless Contact Problem with Adhesion and Damage

Mohamed Selmani, Lynda Selmani (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider a dynamic frictionless contact problem for a viscoelastic material with damage. The contact is modeled with normal compliance condition. The adhesion of the contact surfaces is considered and is modeled with a surface variable, the bonding field, whose evolution is described by a first order differential equation. We establish a variational formulation for the problem and prove the existence and uniqueness of the solution. The proofs are based on the theory of evolution equations with...

A frictional contact problem with adhesion for viscoelastic materials with long memory

Abderrezak Kasri (2021)

Applications of Mathematics

We consider a quasistatic contact problem between a viscoelastic material with long-term memory and a foundation. The contact is modelled with a normal compliance condition, a version of Coulomb's law of dry friction and a bonding field which describes the adhesion effect. We derive a variational formulation of the mechanical problem and, under a smallness assumption, we establish an existence theorem of a weak solution including a regularity result. The proof is based on the time-discretization...

Currently displaying 1 – 2 of 2

Page 1