Page 1 Next

Displaying 1 – 20 of 22

Showing per page

On a 1-D model of stress relaxation in an annealed glass

Vladimír Janovský, David Just (2002)

Applications of Mathematics

A 1-D model of a slab of glass of a small thickness is considered. The governing equations are those of the classical 1-D linear viscoelasticity. A load due to the temperature gradients is assumed. The aim is to model the process called annealing. It is shown that an additional load due to structural strain is crucial for the success of the model. Algorithms of a numerical solution of the governing equations are proposed. Numerical results are presented and commented.

On a constrained minimization problem arising in hemodynamics

João Janela, Adélia Sequeira (2008)

Banach Center Publications

Experimental evidence collected over the years shows that blood exhibits non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield stress and thixotropic behaviour. Under certain conditions these characteristics become relevant and must be taken into consideration when modelling blood flow. In this work we deal with incompressible generalized Newtonian fluids, that account for the non-constant viscosity of blood, and present a new numerical method to handle fluid-rigid body interaction...

On a type of Signorini problem without friction in linear thermoelasticity

Jiří Nedoma (1983)

Aplikace matematiky

In the paper the Signorini problem without friction in the linear thermoelasticity for the steady-state case is investigated. The problem discussed is the model geodynamical problem, physical analysis of which is based on the plate tectonic hypothesis and the theory of thermoelasticity. The existence and unicity of the solution of the Signorini problem without friction for the steady-state case in the linear thermoelasticity as well as its finite element approximation is proved. It is known that...

On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface

Hans-Ullrich Wenk (1982)

Aplikace matematiky

The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...

On the numerical modeling of deformations of pressurized martensitic thin films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

On the Numerical Modeling of Deformations of Pressurized Martensitic Thin Films

Pavel Bělík, Timothy Brule, Mitchell Luskin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.

On the Signorini problem with friction in linear thermoelasticity: The quasi-coupled 2D-case

Jiří Nedoma (1987)

Aplikace matematiky

The Signorini problem with friction in quasi-coupled linear thermo-elasticity (the 2D-case) is discussed. The problem is the model problem in the geodynamics. Using piecewise linear finite elements on the triangulation of the given domain, numerical procedures are proposed. The finite element analysis for the Signorini problem with friction on the contact boundary Γ α of a polygonal domain G R 2 is given. The rate of convergence is proved if the exact solution is sufficiently regular.

On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations

Luca Formaggia, Alexandra Moura, Fabio Nobile (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluid-structure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the...

On the theory of thermoelasticity

Henryk Kołakowski, Jarosław Łazuka (2011)

Applicationes Mathematicae

The aim of this paper is to prove some properties of the solution to the Cauchy problem for the system of partial differential equations describing thermoelasticity of nonsimple materials proposed by D. Iesan. Explicit formulas for the Fourier transform and some estimates in Sobolev spaces for the solution of the Cauchy problem are proved.

Currently displaying 1 – 20 of 22

Page 1 Next